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ABSTRACT 
 

Engineering optimization needs easy-to-use and efficient optimization tools that can be 
employed for practical purposes. In this context, stochastic search techniques have good 
reputation and wide acceptability as being powerful tools for solving complex engineering 
optimization problems. However, increased complexity of some metaheuristic algorithms 
sometimes makes it difficult for engineers to utilize such techniques in their applications. Big-
Bang Big-Crunch (BB-BC) algorithm is a simple metaheuristic optimization method emerged 
from the Big Bang and Big Crunch theories of the universe evolution. The present study is an 
attempt to evaluate the efficiency of this algorithm in solving engineering optimization 
problems. The performance of the algorithm is investigated through various benchmark 
examples that have different features. The obtained results reveal the efficiency and 
robustness of the BB-BC algorithm in finding promising solutions for engineering 
optimization problems.  
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1. INTRODUCTION 
 

Daily life is full of instances which involve decision making about the best possible solution. 
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By using the shortest path to reach the destination, shopping with a certain budget, or ordering 
daily tasks, implicitly one tries to find an optimum solution. Generally, time and cost 
limitations are the two most common restrictions faced in real life optimization instances. 
Similar to frequent daily problems, the field of engineering design includes a wide range of 
optimization problems as well. It can even be stated that engineering design without 
optimization is not meaningful. 

Generally, in engineering design optimization the aim is to find the best set of design 
variables which leads to a final cost efficient design regarding a predefined set of constraints. 
Typically, by increasing the number of design variables and constraints involved in an 
engineering optimization problem, finding the optimal solution becomes a cumbersome task 
which needs an efficient optimization algorithm. The most recent techniques capable of 
dealing with different types of engineering optimization problems are the so called 
metaheuristic search algorithms. In the past decades, genetic algorithms [1], simulated 
annealing [2], particle swarm optimization [3], ant colony optimization [4, 5], harmony search 
method [6] etc. have proved to be quite robust and versatile in solving practical optimization 
instances. The stochastic characteristics of metaheuristics provide efficient search mechanisms 
for finding the optimal results from the broad solution spaces of complex engineering 
optimization problems. Further, metaheuristics do not need gradient information of objective 
functions and can handle both discrete and continuous design variables.  

Big Bang–Big Crunch (BB-BC) algorithm [7] is a newly proposed metaheuristic 
optimization method inspired from the theories of the universe evolution. Due to the simple 
algorithmic outline of the algorithm and its efficiency in solving optimization problems, it has 
become one of the popular metaheuristics of the recent years [8-12]. The present study 
involves a performance evaluation of the BB-BC algorithm in engineering optimization 
problems. The remaining sections of the paper are arranged as follows. The second section 
includes a description of the BB-BC algorithm and the related formulation. In the third 
section, the efficiency of the BB-BC algorithm is investigated using three well known 
benchmark problems and the numerical results are presented. A brief conclusion of the study 
is given in the last section. 

 
 

2. BIG-BANG BIG-CRUNCH ALGORITHM 
 

Big-Bang Big-Crunch optimization method has been first appeared in Erol and Eksin’s study  [7]. 
It is emerged from the Big Bang and Big Crunch theories of the universe evolution. As its name 
implies, the method is based on the continuous application of two successive stages, namely Big 
Bang and Big Crunch phases. During Big Bang phase, new solution candidates, which are the 
parameters that affect the fitness function, are randomly generated around a “center of mass”, that 
is later calculated in the Big Crunch phase with respect to their fitness values. 

The algorithm is quite simple and is comprised of a few steps: 
i. Form the initial population by spreading randomly solution candidates over all search 

space (first Big Bang) in a uniform manner. This step has to be applied once. 
ii. Calculate the fitness value of every individual point and assign this value as its mass 

(if a minimization is to be carried out, form the “mass value” either by inversing the 
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fitness/cost value or by subtracting it from a constant number chosen bigger than the 
maximum possible value). 

iii. Calculate the “center of mass” by taking the weighted average using the coordinates 
and the mass values of every single individual (Big Crunch phase) or choose the fittest 
individual among all as their center of mass. 

iv. Generate new solution candidates by using Normal Distribution (Big Bang phase). 
v. Keep the fittest individual found so far in a separate place or as a member of the 

population (elitism) and go to step ii until a stopping criterion is accomplished. 
In the present study, in each iteration of the BB-BC algorithm equation (1) is used to 

generate the new candidates around the center of mass which is taken as the fittest individual 
of the population. 
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lower and upper bounds of the i-th variable, respectively, ir  is a randomly generated number 
according to a standard normal distribution, k is the iteration number, and α is a constant.  

 
 

3. NUMERICAL EXAMPLES 
 

This section covers three well known benchmark engineering optimization examples, which 
are used for performance evaluation of the BB-BC algorithm. Here, for BB-BC algorithm a 
population of 50 individuals is employed and the value of parameter α  in equation (1) is set to 
0.5. The optimum solution located using the BB-BC algorithm in each benchmark example is 
compared to the previously reported results in the literature.  

 
3.1. Example 1: welded beam design  

In order to evaluate the performance of the BB-BC algorithm, the optimum design of the 
welded beam (A), shown in Figure 1, is considered as the first benchmark example. Many 
researchers considered this benchmark problem so far [13-21]. Here, the objective is to find 
the best set of design variables to minimize the total fabrication cost of the structure subject to 
shear stress (τ), bending stress (σ), buckling load (Pc), and end deflection (δ) constraints. 
Considering x1 = h, x2 = l, x3 = t, and x4 = b as the design variables, the mathematical 
formulation of the problem can be stated as follows [21]:  



S. Kazemzadeh Azad, O. Hasançebi and O. K. Erol 

 

498 

 
Figure 1. Welded beam structure [13]  
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P = 6000 lb,   L =14 in.,    E = 30×106 psi,    G = 12×106 psi,    τmax = 13600 psi,  
σmax = 30000 psi, and δmax = 0.25 in. 
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Here, the bounds on the design variables are: 
 

 21.0 1≤≤x ,  101.0 2 ≤≤ x ,  101.0 3 ≤≤ x , 21.0 4≤≤x  (6) 
 
For this example, the BB-BC algorithm is executed 100 times, and the best design is found 

as x* = {x1, x2, x3, x4} = {0.205440287437146, 3.47829687981258, 9.03860804181735, 
0.205723869899450}. A comparison of this design with those of other studies in the literature 
is carried out in Table 1. As can be seen from this table, the BB-BC algorithm finds a near 
optimum solution using only 20000 objective function evaluations which is considerably lesser 
than those of other approaches. On the other hand, a statistical evaluation of 100 independent 
runs of BB-BC is presented in Table 2 in terms of the best, worst, average, and standard 
deviation (S. D.) of the designs attained in these runs.  

 
Table 1. The best solutions of welded beam design problem obtained with various methods 

Design variables Gandomi et 
al.[18] 

Fesanghary 
et al. [19] 

Mahdavi 
et al. [20] 

Lee and 
Geem [13] This work 

x1 0.2015 0.20572 0.20573 0.2442 0.2054 

x2 3.562 3.47060 3.47049 6.2231 3.4783 

x3 9.0414 9.03682 9.03662 8.2915 9.0386 

x4 0.2057 0.20572 0.20573 0.2443 0.2057 

Cost(x) 1.73121 1.7248 1.7248 2.38 1.72576 

No. evaluations 50000 90000 200000 110000 20000 
 
Table 2. The statistical performance of BB-BC algorithm in the welded beam design problem 

Performance This work 

Best 1.72576 

Average 1.773 

Worst 2.1376 

S. D. 0.0824 
 

3.2. Example 2: design of a  pressure vessel 

The optimum design of the cylindrical pressure vessel capped at both ends by hemispherical 
heads (Figure 2) is considered as the second benchmark example [22]. The aim is to minimize 
the total manufacturing cost of the vessel regarding the combination of welding, material and 
forming costs. The vessel will be designed for a working pressure of 3000 psi and a minimum 
volume of 750 ft3 according to the provisions given in ASME boiler and pressure vessel code. 
The shell and head thicknesses should be multiples of 0.0625 in. The thickness of the shell and 
head is limited to 2 in. The shell and head thicknesses are not to be less than 1.1 in. and 0.6 
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in., respectively. The design variables of the problem are x1 as the shell thickness (Ts), x2 as the 
spherical head thickness (Th), x3 as the radius of cylindrical shell (R), and x4 as the shell length 
(L). The formulation of the problem is as follows: 

 

 
Figure 2. Spherical head and cylindrical shell of the pressure vessel [17] 
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where the bounds on the discreet design variables are: 

   
 2125.1 1 ≤≤ x ,  2625.0 2 ≤≤ x  (10) 

 
In addition, in the present study the bounds on the continuous design variables, x3 and x4, 

are taken as follows:   
 24010 3 ≤≤ x   , 24010 4 ≤≤ x  (11) 

   
The best solution obtained from 100 independent runs of the BB-BC algorithm is given in 

Table 3, along with optimum solutions reported for this problem with other techniques in the 
literature. In this example BB-BC algorithm finds a near optimum solution vector of x* = {x1, 
x2, x3, x4} = {1.125, 0.625, 58.2895313658313, 43.6964127951347} through 25000 objective 
function evaluations. A statistical evaluation of the designs obtained through 100 independent 
runs of BB-BC is presented in Table 4.  
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Table 3. The best solutions of pressure vessel design problem obtained with various methods 

Design variables Mahdavi et al. 
[20] 

Lee and Geem 
[13] Sandgren [22] This work 

x1 1.125 1.125 1.125 1.125 

x2 0.625 0.625 0.625 0.625 

x3 58.29015 58.2789 48.97 58.2895 

x4 43.69268 43.7549 106.72 43.6964 

Cost(x) 7197.730 7198.433 7982.5 7199.412 
 

Table 4. The statistical performance of BB-BC algorithm in the pressure vessel design problem 

Performance This work 

Best 7199.412 

Average 7347.105 

Worst 9770.499 

S. D. 420.07 
 

3.3. Example 3: one hundred twenty-bar truss 

As the third benchmark example, the weight minimization problem of the 120-bar truss 
structure shown in Figure 3 is considered. Both sizing and geometry optimization of the 
structure is carried out in [23]. In the present study, only the sizing optimization of the truss is 
performed. The structure is subjected to vertical loading at all unsupported nodes. The acting 
loads are -13.49 kips (-60 kN) at node 1, -6.744 kips (-30 kN) at nodes 2 to 14, and -2.248 
kips (-10 kN) in the rest of the nodes. The minimum allowable cross-sectional area of each 
member is limited to 0.775 in.2 (5 cm2). The allowable tensile stress is 0.6Fy and the 
compressive stress constraint 

 b
 iσ of member i is computed as follows [24]: 
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In equation (12), Fy is the yield stress of steel, E is the modulus of elasticity, λ i  is the 

slenderness ratio  (λ i = kL i /r i ) of i-th member, k is the effective length factor, L i  is the length 
of i-the member, r i  is the radius of gyration,  and y2 FE2C π= . Here, the material density is 
0.288 lb/in.3 (7971.81 kg/m 3 ), Fy = 58 ksi (400 MPa), and E = 30,450 ksi (210,000 MPa). In 
this example, two cases of displacement constraints are considered. 
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Case-1: no displacement constraints is imposed; 
Case-2: the displacement of all nodes in directions x, y and z is limited to ±0.1969 in.  
 

a 1  = 546.61 in.  a 2  = 984.252 in.  a 3  = 1251.02 in. 

h 1  = 118.11 in.  h 2 = 230.315 in.  h 3 = 275.591 in.  
Figure 3. 120-bar truss structure 

 
As shown in Figure 3, the members of the truss are grouped into seven sizing design variables 

(i.e. A1 to A7). This problem is solved by Lee and Geem [6] using a harmony search algorithm 
based approach. Recently, the same problem is studied with an improved firefly algorithm by 
Kazemzadeh Azad and Kazemzadeh Azad [25]. Tables 4 and 5 tabulate the optimum solutions of 
the problem in both cases obtained in this study in comparison to those of the other aforementioned 
approaches. These solutions are obtained by running the BB-BC algorithm independently a total of 
five times over 15,000 function evaluations each time. A statistical performance of the BB-BC 
algorithm in five independent runs is presented in Table 6. 
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Table 4. The best solutions of 120-bar truss structure (Case-1) obtained with various methods 

Design variables (in.2) Lee and Geem [6] Ref. [25]  This work  

A1 3.295 3.3293 3.3180 

A2 2.396 2.4384 2.4584 

A3 3.874 4.0168 3.8925 

A4 2.571 2.5918 2.5715 

A5 1.15 1.1823 1.1535 

A6 3.331 3.4513 3.3382 

A7 2.784 2.7854 2.7879 

Weight (lb) 19707.77 20016.67 19784.015 

No. evaluations 35000 15000 15000 

 
Table 5. The best solutions of 120-bar truss structure (Case-2) obtained with various methods 

Design variables (in.2) Lee and Geem [6] Ref. [25]  This work  

A1 3.296 3.3005 3.3028 

A2 2.789 2.7481 2.7853 

A3 3.872 3.9036 3.8972 

A4 2.57 2.5713 2.5787 

A5 1.149 1.2889 1.1587 

A6 3.331 3.4089 3.3415 

A7 2.781 2.8150 2.7883 

Weight (1b) 19893.34 20125.35 19953.016 

No. evaluations 35000 15000 15000 

 
Table 6. The statistical performance of BB-BC algorithm in the 120-bar truss structure problem 

Performance This work (Case-1) This work (Case-2) 

Best 19784.015 19953.016 

Average 19967.247 20198.946 

Worst 20515.951 20871.959 

S. D. 310.34 385.65 
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4. CONCLUSION 
 

In this study, the efficiency of the BB-BC algorithm in solving engineering optimization 
problems is evaluated through typical benchmark problems. Optimum design of a welded 
beam, design optimization of a pressure vessel as well as weight minimization of a 120-bar 
truss structure are carried out based on the BB-BC algorithm and the numerical results are 
compared to the previously reported results in the literature. Beside the best solutions found 
using the BB-BC algorithm, the worst, average, and standard deviation of results, obtained 
through independent runs of the algorithm, are also reported to provide a general outline of the 
performance. The numerical results indicate that complex engineering optimization problems 
can be effectively tackled using the BB-BC algorithm based approaches. 
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